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Abstract

We establish an on-line optimization framework to exploit weather forecast infor-
mation in the operation of energy systems. We argue that anticipating the weather
conditions can lead to more proactive and cost-effective operations. The framework
is based on the solution of a stochastic dynamic real-time optimization (D-RTO)
problem incorporating forecasts generated from a state-of-the-art weather predic-
tion model. The necessary uncertainty information is extracted from the weather
model using an ensemble approach. The accuracy of the forecast trends and uncer-
tainty bounds are validated using real meteorological data. We present a numerical
simulation study in a building system to demonstrate the developments.

1 Introduction

The economic performance of industrial systems is strongly affected by dynamic distur-
bances evolving at different time scales. These include input flows, product demands, en-
ergy prices, weather conditions, among others. In order to manage these disturbances, the
operational decisions are decomposed in a hierarchical manner. The top decision-making
level is the supervisory or economic optimization layer which adjusts the set-points as low-
frequency disturbances evolve in time. The lower decision-making level is the control level
that rejects high-frequency disturbances in order to keep the process close to economic
optimal set-points. A widely-used supervisory operation strategy is real-time optimization
(RTO) [35]. RTO makes use of a steady-state rigorous process model to determine the
optimal set-points that maximize the system profit under the current disturbance infor-
mation. An advantage of this strategy is that it can be seen as a closed-loop optimizer
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that rejects disturbances affecting profit [45]. Nevertheless, an important limitation of
RTO is that it is entirely reactive, in the sense that only current disturbances are taken
into account. In other words, RTO neglects the fact that disturbances follow trends that
can be exploited to obtain more efficient operating policies. An alternative to overcome
this limitation is to incorporate disturbance forecast information in a dynamic real-time
optimization (D-RTO) formulation [29]. The exploitation of disturbance trends can add
proactiveness to the operational decisions which can be beneficial both from an economic
and a control perspective. In particular, we claim that the capabilities of D-RTO can
be greatly expanded through the incorporation of weather forecast information. This can
be particularly critical in the operation of energy production systems since their perfor-
mance is strongly affected by the evolution of the weather conditions. Polygeneration
energy systems [11], power plants [25], wind farms [24], photovoltaic systems [50; 54], and
building climate control [7; 40] represent some important applications in the energy sec-
tor. Some other potential industrial applications are the optimization of utility systems
in chemical complexes and the optimization of wastewater treatment plants [9].

Weather forecast information has been used in diverse operational studies. In particu-
lar, it has been widely used for planning, scheduling, and unit commitment tasks in power
grid operations [53; 19]. At these higher decision-making levels, weather information is
exploited indirectly by mapping it to economic variables such as user power demands (e.g.,
electricity and heating/cooling needs). However, at lower economic optimization and con-
trol levels, trends of ambient temperature, wind speed, solar radiation, and humidity can
be exploited directly through the rigorous process model.

The evolution of the weather conditions is affected by complex physico-chemical phe-
nomena that are difficult predict. This becomes relevant if the economic performance is
dictated by the weather conditions (e.g., wind farm) or if the system is subject to tight
operational constraints (e.g., comfort zone in building systems). In such cases, incorpo-
rating forecast uncertainty in the D-RTO formulation is important. This can be done
through suitable stochastic or robust optimization formulations, however, some impor-
tant obstacles arise. First, obtaining detailed uncertainty information validated with real
data (i.e., probability distributions) is often difficult. For instance, covariance informa-
tion and high-resolution (i.e., minutes, hours) weather trends might be required. This
detailed information can be expensive or impractical to obtain from commercial weather
prediction companies. Second, stochastic optimization problems are infinite-dimensional
and special techniques are needed for their solution. Alternatives to solve stochastic
dynamic optimization problems include, among others, dynamic programming [4], Taylor
series expansions [3; 37], and polynomial chaos expansions [1]. Certain restricted classes
of chance-constrained [39; 40] and minmax [34; 17] formulations can also be reformulated
and solved using standard optimization techniques. A detailed review of available formu-
lations and solution methods is beyond the scope of this paper. However, we emphasize
that a practical obstacle commonly encountered with the aforementioned approaches is
that they can only handle restricted problem classes.

In this work, we establish an on-line optimization framework able to exploit detailed
weather forecast information. In particular, we extend the capabilities of a numerical
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weather prediction model to provide detailed uncertainty information and derive a stochas-
tic D-RTO formulation able to exploit this information. The uncertainty of the weather
prediction model is quantified using an ensemble approach. We propose to use a sample-
average approximation (SAA) to solve the associated problems. We claim that the SAA
approach is attractive from an industrial perspective because it can be implemented quite
easily, it can accommodate large-scale models, and can handle general stochastic formu-
lations with restricted uncertainty information. We contrast the forecast capabilities of
the detailed weather prediction model against those of empirical autoregressive models.
Both forecast models are validated using real meteorological data. We demonstrate that
the use of efficient uncertainty quantification techniques is critical to obtain consistent
uncertainty bounds and appropriate performance of the stochastic optimizer. We present
simulation studies on a building system to illustrate the developments. To the best
of our knowledge, this is the first report proposing to integrate stochastic optimization
formulations and uncertainty quantification techniques for weather forecasting in order to
optimize the economic performance of energy systems.

The paper is organized as follows. In the next section, we establish the stochastic
D-RTO formulation. In Section 3, we present techniques to quantify the uncertainty of
weather forecasts. A simulation case study is presented in Section 4 and the paper closes
with general conclusions and directions for future work.

2 Stochastic Optimization

In this section, we derive a general D-RTO formulation and discuss extensions to con-
sider stochastic disturbance information. We begin by considering a differential-algebraic
equation (DAE) model of the form

dz

dτ
= f (z(τ), y(τ), u(τ), χ(τ)) (1a)

0 = g(z(τ), y(τ), u(τ), χ(τ)) (1b)

z(0) = xk, (1c)

where τ is the model time dimension and tk is the current time in the real system. Variables
z(τ) are differential states, y(τ) are algebraic states, u(τ) are the controls or manipulated
variables, and χ(τ) are the exogenous disturbances. In this context, the term exogenous
refers to the fact that the disturbances are not affected by the system variables (e.g., energy
prices). The differential equations (1a) represent conservation equations (energy, mass,
and momentum), while the algebraic equations (1b) represent consistency conditions and
expressions to calculate physicochemical properties. The initial conditions at time tk are
given by the current state of the system xk.

The disturbance trajectory χ(t), t ∈ [tk, tk + T ] is random with unknown probability
distribution Pk. However, we assume that this distribution can be approximated using a
stochastic forecast model (see Section 3). For instance, we can assume that the forecast
model provides a predictive mean χ̄(τ) and that the associated forecast errors follow a
Gaussian distribution. With this, we can approximate Pk using N (χ̄(τ),V(τ)), where
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V(τ) is the covariance matrix. In this case, a fixed probability level of Pk defines an
ellipsoidal region Ωk of the form,

Ωk := { z | (z − χ̄(τ))TV−1(τ)(z − χ̄(τ)) ≤ α}, (2)

This region is sketched in Figure 1. Under the Gaussian assumption for the forecast
errors, all that is needed to represent the Pk is the predictive mean and the covariance
matrix. However, we emphasize that the proposed structure of the probability distribu-
tion is a modeling assumption and hence might not be accurate. Nevertheless, from a
practical point of view, what we seek is that the approximate probability distribution is
able to encapsulate the true disturbance realizations and that it has a physically meaning-
ful structure. To exploit the statistical information at hand, we formulate a stochastic

Figure 1: Schematic representation of ellipsoidal uncertainty region.

dynamic optimization problem of the form

min
u(τ)

E
χ(τ)

[∫ tk+T

tk

ϕ(z(τ), y(τ), u(τ), χ(τ))dτ

]

(3a)

s.t.
dz

dτ
= f (z(τ), y(τ), u(τ), χ(τ))

0 = g(z(τ), y(τ), u(τ), χ(τ))
0 ≥ h(z(τ), y(τ), u(τ), χ(τ))







τ ∈ [tk, tk + T ], ∀χ(τ) (3b)

z(tk) = xk, (3c)

where symbol E[·] denotes the expectation operator with associated distribution Pk. From
the solution of this problem, we obtain the state and control trajectories z∗(τ), y∗(τ), u∗(τ), τ ∈
[tk, tk +T ] that can be sent to a lower-level controller as set-points. At the next time step
tk+1, we obtain the updated state of the system xk+1 and the updated forecast distribution
Pk+1 that we use to solve the next stochastic problem (3).

Note that the weather trends are treated as parameters in the stochastic optimization
formulation. In other words, the stochastic differential equations representing the weather
dynamics are not introduced considered here. This is justified by the fact that the weather
trends act as exogenous disturbances (i.e., the weather is not affected by the system). The
weather dynamics will be presented in Section 3. In problem (3) we have assumed that
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the expectation of the objective function distribution is an adequate measure of the per-
formance of the system. However, this need not be the case. For instance, we could also
choose the mean-risk approach of Markowitz where we seek to minimize simultaneously
the mean and the variance of the cost distribution. In an stochastic optimization frame-
work, the structure of the cost function becomes a design task and it is entirely problem
dependent. Note also that the proposed stochastic formulation assumes that no recourse
exists in the future, as in a dynamic programming approach [4] or in closed-loop MPC
approaches [40]. It is well-known that introducing future recourse can reduce the conser-
vativeness of the solution. Finally, we do not consider uncertainty on the system state
xk and model errors. Here, we use a rather simple stochastic optimization formulation in
order to illustrate the main points of the proposed strategy.

The stochastic formulation presented in (3) is computationally demanding since it is
infinite-dimensional in χ(τ). In addition, the number of disturbances is expected to be
large as well. To solve the stochastic optimization problem, we use a sample-average
approximation (SAA) approach. The idea is to use Monte Carlo sampling to obtain
Ns independent samples from the distribution Pk. This gives the set of disturbance
realizations {χ1(τ), χ2(τ), ..., χNs

(τ)}. With this, the approximate stochastic problem
becomes,

min
u(τ)

1

Ns

Ns∑

j=1

[∫ tk+T

tk

ϕ(zj(τ), yj(τ), u(τ), χj(τ))dτ

]

(4a)

s.t.
dzj

dτ
= f (zj(τ), yj(τ), u(τ), χj(τ))

0 = g(zj(τ), yj(τ), u(τ), χj(τ))
0 ≥ h(zj(τ), yj(τ), u(τ), χj(τ))







τ ∈ [tk, tk + T ], j = 1, ..., Ns (4b)

zj(tk) = xk. (4c)

In this formulation, all the variables become a function of the particular disturbance
realization except the controls, which are decision variables. One of the key advantages of
the SAA approach is that it is straightforward to implement. Moreover, it is particularly
suitable for large-scale systems because it gives rise to highly structured problems [33;
28]. In addition, it allows the solution of general stochastic formulations in a unified
manner. The theoretical properties of the SAA approach have been studied in the context
of nonlinear programming. For instance, it has been shown that solutions of the SAA
problem converge at an exponential rate with the number of samples to the solution of
the stochastic counterpart [47; 2]. In addition, the number of scenarios Ns used in the
SAA problem can be related to the probability of satisfying the constraints. With this,
equivalence with chance constrained formulations can be established [39]. Although no
formal convergence results exist in the context of dynamic optimization problems, we can
expect that the available convergence guarantees can be used under mild assumptions.
For instance, if we discretize problem (3) in time, we can argue that as long as we have
a convergent and well-posed time-discretization scheme, the SAA approach will converge
to the stochastic counterpart under standard regularity assumptions [47; 2]. This is an
important theoretical question and will not be pursued here. Another crucial advantage of
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the SAA approach is that disturbance realizations can be incorporated in the optimization
formulation without even knowing their distribution. This permits to handle random
variables with non-Gaussian distributions and to accommodate disturbance realizations
directly in the formulations (i.e., the covariance matrix is not needed). As we will see in
the next section, this is important if a detailed weather prediction model is used since
the amounts of data to be handled in the optimization framework can become extremely
large.

The prototypical closed-loop D-RTO strategy based on SAA is as follows:

1. Obtain current state and forecast: At time tk, obtain current state xk, and
disturbance realizations {χ1(τ), χ2(τ), ..., χNs

(τ)}, τ ∈ [tk, tk + T ] from forecast ca-
pability.

2. Compute set-points: Solve stochastic optimization problem (4). Send optimal
set-points z∗(τ), y∗(τ), u∗(τ), τ ∈ [tk, tk + T ] to low-level control layer.

3. Update: At tk + ∆, set k ← k + 1, and repeat process.

Here, ∆ is the set-point update period. If Pk is approximated using a Gaussian distri-
bution, the forecasting capability can also communicate the mean χ̄(τ) and covariance
matrix V(τ), τ ∈ [tk, tk + T ] instead of the disturbance realizations.

3 Uncertainty Quantification

From the previous section, it is clear that different techniques can be used to solve stochas-
tic dynamic optimization problems. However, we emphasize that regardless of the solu-
tion approach used, a perhaps more important (and often overlooked) issue in stochastic
optimization studies is the need of consistent uncertainty information. For instance, con-
straint satisfaction cannot be enforced appropriately with any solution approach if the
bounds of the uncertainty region do not encapsulate the actual realizations. In addition,
the conservativeness of the solution is directly related to the uncertainty bounds. Conse-
quently, several questions arise: Can we get accurate and consistent forecast information?
What techniques can be used to quantify uncertainty? How does the accuracy of the un-
certainty information manifest in the solution of the stochastic optimization problem? In
this section, we present two techniques to generate forecasts and uncertainty information
that can be exploited by stochastic optimization formulations.

3.1 Numerical Weather Prediction Model

We first derive an ensemble data assimilation approach based on a detailed numerical
weather prediction (NWP) model. In particular, we discuss how to capture the uncertainty
of the temperature field.

Major weather prediction centers, such as the European Centre for Medium- Range
Weather Forecasts (ECMWF) and the U.S. National Centers for Environmental Prediction
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(NCEP), are capable of producing high-precision weather forecasts several times a day.
Advances in this area are due to improved models of the atmosphere, greater availability of
atmospheric data, increased computational power, and the continued improvement of state
estimation algorithms. If the state of the atmosphere (temperatures, pressures, humidities,
wind speeds and directions) were known exactly at a given time, a forecast could be
obtained by integrating the atmospheric model equations forward in time. In practice,
however, the state of the atmosphere is known only indirectly through observations that
are distributed non-uniformly in space and time and subject to error [22]. Therefore, the
model must be first reconciled to the most recent observations. This state estimation
problem is called in the weather forecast literature as the data assimilation problem.
Traditional assimilation techniques such as Kalman filtering [21; 8] and 4-D Var (moving
horizon estimation) [16] are used internally in the models for this [13; 14; 15; 41; 26; 27].
The objective function is derived from Bayesian or maximum likelihood principles (e.g.,
weighted least-squares) and includes a term that penalizes deviation from a prior state
(e.g., initial conditions). Once the current state is obtained from the solution of the
assimilation problem, it is possible to integrate the atmospheric model equations forward
in time to produce a forecast.

The forecast uncertainty can be constructed from the posterior distribution of the
current state obtained from the data assimilation step. This distribution can then be
sampled and evolved through the NWP model dynamics. The resulting trajectories can
then assembled to obtain an approximation of the forecast covariance matrix. This proce-
dure is explained in Section 3.1. In Section 3.1.2, we present a procedure to approximate
the posterior covariance of the spatial temperature field using the assimilated state of the
NWP model.

The Weather Research and Forecasting (WRF) model is a state-of-the-art mesoscale
numerical weather prediction system designed to serve both operational forecasting and
atmospheric research needs [49]. We use the current version of this model, WRF 3.1, with
the default settings for the forecast and uncertainty estimation on temperature fields.
The data used in the WRF model in this work corresponds to North American Regional
Reanalysis data set that covers 160W-20W, 10N-80N, with a resolution of 10 minutes of a
degree. There are 29 pressure levels (1000-100 hPa, excluding the surface) and a three-hour
output frequency. The time period under consideration ranges from August 1 to August
30, 2006, [http://dss.ucar.edu/pub/narr]. This data set includes meteorological fields
such as temperature, wind, and humidity.

3.1.1 Ensemble Approach to Uncertainty Quantification

The dimensions of the state vector in the weather model with a coarse spatial discretization
are O(106)−O(108). Therefore, the state covariance matrices are extremely large (grows
with the square of the number of states). Hence, in practice, these matrices need to
be approximated with a reduced model [12; 13; 14] or with an ensemble of realizations
[43; 31; 46]. In this work, we prefer to use the ensemble approach because it can be
implemented by using the WRF model as a black box. If the dimension of a random
variable x is defined as n, a given covariance matrix V ∈ R

n×n can be approximated by
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an ensemble of m realizations xi, 1 ≤ i ≤ m as,

V :=
1

m − 1

m∑

i=1

(xi − x) (xi − x)T ≈ E
[

(x − x) (xi − x)T
]

,

x :=
1

m

m∑

i=1

xi ≈ E[x]. (5a)

One also has that,

V = D
1

2 CD
1

2 , Ci,j =
Vi,j

√
Di,i

√
Dj,j

=
Vi,j

σiσj

=
σ2

i,j

σiσj

, 1 ≤ i, j ≤ n ,

where C is the correlation matrix and D is a diagonal matrix holding the local variances
(Di,i = σ2

i ). In the context of the stochastic optimization framework of Section 2, x
represents the future trajectory exogenous states or disturbances χ(τ) with mean x := χ(τ)
and covariance V := V(τ). Note that the disturbance at a particular point in time tk
represents a three-dimensional spatial field χ(tk, x, y, z). In the following, we simplify
the notation by eliminating the explicit dependence on the space dimensions. Using this
representation, we now discuss how to approximate the forecast covariance.

At current time tk, the exact state of the atmosphere is not known exactly and therefore
the state of the weather model is described through random variables. The errors in
atmospheric models are assumed to stem from many independent sources, and thus it is
common, realistic, due to the central limit theorem [18], and convenient to consider them
as having a normal distribution [30; 26; 36; 20]. The mean of this posterior distribution is
the assimilated state of the WRF model, which has been reconciled to past measurement
data. We denote the true state of the weather model at time tk as χtrue(tk). Since the
weather model is not perfect, the true state at tk+1 is given by the stochastic discrete-time
model of the form,

χtrue(tk+1) = M (χtrue(tk)) + η(tk), (6)

where M is the WRF model and η(·) represents the model errors that are assumed to be
unbiased with covariance Q, η ∈ N (0, Q). Since the current state is not known exactly,
the numerical prediction at time tk+1, χ(tk+1), is obtained from the model evolution of
the believed state (true solution perturbed with errors). This is represented by a set of
unbiased random variables ε(tk) with Gaussian distribution N (0,V(tk)). With this, we
can express the future believed state as

χ(tk+1) = M (χtrue(tk) + ε(tk)) . (7)

Since χ(tk+1) becomes a random variable, we define its covariance matrix as V(tk+1). The
matrix is given by,

V(tk+1) = E
[

(χ(tk+1) − χtrue(tk+1)) (χ(tk+1) − χtrue(tk+1))
T
]

(8a)

= E [(M (χtrue(tk) + ε(tk)) − (M (χtrue(tk)) + η(tk)))

· (M (χtrue(tk) + ε(tk)) − (M (χtrue(tk)) + η(tk)))
T
]

. (8b)
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Note that this formula reduces to the Kalman filter covariance update under certain special
conditions. To illustrate this, we first assume that the initial condition errors ε(tk) and
model errors η(tk) are uncorrelated. Consequently,

E
[
(M (χtrue(tk) + ε(tk))) η(tk)

T
]

= 0.

Moreover, if we assume that the error growth is well approximated by a linearized model,
then

M (χtrue(tk) + ε(tk)) −M (χtrue(tk)) = M · ε(tk) .

where M = dM
dy

. It follows that (8a) becomes

V(tk+1) ≈ E
[

(M · ε(tk) + η(tk)) (M · ε(tk) + η(tk))
T
]

,

= E
[
Mε(tk)ε(tk)

T MT
]
+ E

[
M · ε(tk)η(tk)

T
]
+ E

[
η(tk)ε(tk)

T MT
]
+ E

[
η(tk)η(tk)

T
]

,

= MV(tk)M
T + Q. (9)

Equation (9) represents a linear approximation of the exact error covariance. It is well
known that such an approximation can deviate significantly in highly nonlinear mod-
els. The ensemble approach proposed in this work propagates the uncertainties in the
current state field through the nonlinear WRF model according to (7). The covariance
matrix is approximated by using an ensemble of realizations generated by sampling the
posterior distribution N (0,V(tk)). We obtain multi-step trajectories by recursive model
propagation of each realization

Y[j,i] := χi(tk+j) = M(M(...M
︸ ︷︷ ︸

j times

(χtrue(tk) + εi(tk)))), j = 1, ..., NF , i = 1, ...,m, (10)

Where NF is the total number of forecast steps and tk+1 − tk = ∆. These trajectories
can be sent directly to the stochastic optimizer. Alternatively, we can compute the multi-
step forecast mean YP and covariance matrix VP using the ensemble approximations (5).
Note that the ensemble approach is able to capture the strong model nonlinearities more
accurately. To obtain the ensembles, however, we need to specify the posterior covariance
V(tk). Because of the extremely large state dimensionality, the posterior matrix cannot
be computed using traditional methods such as the Kalman filter propagation. We next
introduce a method to obtain an approximation of this matrix.

Remark: In weather modeling the most successful state estimation approaches have
been EnKF and 4D-Var. In both of these approaches, the Gaussian assumption of the
posterior and measurement and model errors is required to define the maximum likelihood
function [30; 26; 36; 20]. This is justifiable by the additive nature of many of error com-
ponents and the central limit theorem as well as the convenience of normal distributions
[30]. With this, the distribution of the current estimated state (posterior) is also implicitly
assumed to be Gaussian. However, the forecast ensembles do not need to be Gaussian
since the samples of the posterior are propagated through the nonlinear WRF model.

9



3.1.2 The NCEP Method for Covariance Estimation

The National Centers for Environmental Prediction (NCEP) method [43; 23; 31] has been
used to estimate the spatial uncertainty information and estimate the posterior distribution
N (0,V(tk)). The idea is to estimate characteristic correlation distances to construct an
empirical covariance matrix. The inferred characteristic horizontal correlation distance
for this case is approximated by LH = 2 degrees and by LV = 500 meters in the vertical
direction. The spatial correlation function between two spatial points χ(tk, xi, yi, zi) and
χ(tk, xj, yj, zj) is defined as

Ci,j = exp

(

−
(xj − xi)

2 + (yj − yi)
2

L2
H

−
(zj − zi)

2

L2
V

)

. (11)

The correlation function (11) is used to construct the empirical covariance matrix from
which the ensemble for the initial state field is drawn. Here, we focus on the temperature
field T (tk, x, y, z). The true initial temperature field is not known exactly, but we assume
that it is correctly represented by an unbiased random vector εT (tk). With this, the
temperature field T (tk) is characterized by a random vector TB(tk) with the following
properties:

TB(tk) = T (tk) + εT (tk) , E
[
εT (tk)εT (tk)

T
]

= VTT (tk) , E [εT (tk)] = 0

⇒ TB(tk) ∈ N (T (tk),VTT (tk)) .

The initial temperature field is approximated by an m-member ensemble drawn from

TB
j (tk) = T (tk) + GCGT ξj , 1 ≤ j ≤ m , ξ ∈ N (0, 1) ,

where GCGT ≈ VTT (tk). Here, matrix G transforms the unbalanced variables into full
quantities for temperature and is defined as G[j] := σG(zj)I, j = 1, . . . , nz, and G =
diag

(
G[1], . . . , G[nz]

)
, where

σG(zj) = E [T (tk, x, y, zj)] / max
i

(E [T (tk, x, y, zi)]) .

This covariance can then be used to compute the disturbance realizations (10).

3.2 Gaussian Process Modeling

A straightforward disturbance forecast alternative is to use historical measurement data to
construct regression models. Consequently, an important question is if it is worth consid-
ering a highly sophisticated weather model to obtain forecast information. In this section,
we present a regression modeling technique in order to establish a basis for comparison.

Several empirical modeling techniques can be used to generate weather forecast trends.
An approach that has recently received attention is Gaussian process (GP) modeling
[44; 48; 32; 42]. The idea is to construct an autoregressive model by specifying the
structure of the covariance matrix rather than the structure of the dynamic model itself
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as in traditional system identification techniques such as the Box-Jenkins approach [5]. We
have found that this feature makes the GP approach more flexible. Consequently, this is
the approach considered in this work. To illustrate the use of this technique, we construct a
forecast model for the ambient temperature by regressing the future temperature (output)
χk+1 to the current and previous temperature values (inputs) χk, ..., χk−N that can be
obtained from weather information data bases. In this case, N is selected long enough
to capture the periodic trends of the ambient temperature. We define the model inputs
as X[j] = [χk−N−j, ..., χk−j] and the outputs as Y[j] = χk+1−j, and we collect a number
of training sets j = 0, ..., Ntrain. We assume that the inputs are correlated through an
exponential covariance function of the form

V(X[j],X[i], η) := η0 + η1 · exp

(

−
1

η2

‖X[j] − X[i]‖
2

)

, i = 0, ..., Ntrain, j = 0, ..., Ntrain,

(12)

where η1, η2, and η3 are hyperparameters estimated by maximizing the log likelihood
function

log p(Y|η) = −
1

2
YTV−1(X,X, η)Y −

1

2
log det(V(X,X, η)). (13)

Once the optimal hyperparameters η∗ are obtained, we can compute mean predictions YP

with associated covariance VP at a set of test points XP . In our context, these are the
evolving temperature trends. The resulting GP posterior distribution is

YP = V(XP ,X, η∗)V−1(X,X, η∗)Y (14a)

VP = V(XP ,XP , η∗) − V(XP ,X, η∗)V−1(X,X, η∗)V(X,XP , η∗). (14b)

The inverse of the input covariance VX := V−1(X,X, η∗) (e.g., its factorization) needs to
be computed only during the training phase. With this, we can define a conceptual GP
model of the form

YP = GP(XP , η∗,VX). (15)

Note that at current time tk, we have measurements to compute only the single-step
forecast χ̄k+1. To obtain multi-step forecasts, we must propagate the GP predictions
recursively. We use the following algorithm,

1. Forecast mean computation: For j = 1, ..., NF do,

(a) Set XP
[j] ← [χk−N , χk−N+1..., χk]

(b) Compute YP
[j] = GP(XP

[j], η
∗,VX)

(c) Drop last measurement, set χk+1 ← YP
[j], and update k ← k + 1

2. Forecast covariance computation: Compute self-covariance V(XP ,XP , η∗) and
cross-covariance V(XP ,X, η∗). Compute forecast covariance VP from (14b).

This recursion generates the forecast mean YP = [χ̄k+1, ...., χ̄k+NF
] and associated covari-

ance matrix VP . Note that this disturbance trends are local (single point in space), as
opposed to those obtained with the weather prediction model.
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3.3 Validation of Uncertainty Models

We next validate the forecast information obtained from the NWP and GP models. An
ambient temperature data set at position 40 30’N/80 13’W in the Pittsburgh, PA area
for year 2006 was used in this study. The data were obtained from the National Weather
Service Office [38]. The temperature trends are presented in Figure 2. Note that strong
temperature variations arise at different time scales (daily and seasonal). The variability
is particularly strong during the winter.

To illustrate the forecasting capabilities of the GP modeling technique, we used a total
of 120 training sets and we set N = 24. We consider a single-step strategy NF = 1 and
a multi-step strategy with NF = 20. In Figure 3, we present the forecast mean and 100
samples drawn from the corresponding normal distributions N (YP ,VP ). The forecast
window corresponds to Aug. 1–6, 2006. In the top graph, we can see that the single-step
strategy provides reasonable forecasts and the uncertainty bounds encapsulate the true
temperature realizations. In the bottom graph, we can see that the multi-step GP model
is able to capture the periodicity of the trends. However, the mean drifts away from the
true temperature realizations and, more importantly, the uncertainty bounds are not able
to encapsulate the actual realizations. This limits the application of this approach from an
stochastic optimization point of view. Note that the ambient temperature follows strong
variations as a result of spatial interactions and long-term metereological phenomena
that cannot be taken into account through empirical modeling techniques. Nevertheless,
we emphasize that GP is quite effective for short-term forecasts. This suggests that the
empirical modeling techniques could be a valuable for high-frequency control (on the other
of seconds, minutes). Similar observations have been made in the context of short-term
wind and solar radiation forecasting [24; 54].
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Figure 2: Ambient temperature in Pittsburgh PA, 2006.

We next validate the forecast and uncertainty information of the NWP model. In
the left graph of Figure 4, we show a multi-step ensemble of 30 ensemble members for
temperature realizations, the expected temperature value, and measurements for five days
(Aug. 1–6, 2006). This corresponds to a total of NF = 120 forecast steps with ∆ = 1hr. In
the right graph we present the reconstructed forecast distribution (mean ± 3σ) obtained
from the ensembles. Note that the forecast errors are small (±5oC) and the uncertainty
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Figure 3: Temperature forecasts with single-step (top) and multi-step GP model (bottom).
Forecast mean is solid line, samples are in light gray, and markers are actual realizations.

envelope encloses the true (measured) solution. In addition, the model can capture long-
term temperature trends except at the third day, where an unusual temperature drop is
observed. In Figure 5(a), we present the hourly evolution of the standard scores of the
actual realizations for the multi-step GP model and for the weather model. In Figure 5(b),
we present the cumulative standard error of the actual realizations for the multi-step GP
model, for the weather model and for the standard normal. For example, a standard error
less than 2 is obtained 65% of the time by the weather model but only 25% by the GP
model. We conclude that the NWP uncertainty model is far more accurate and consistent.

The ensemble forecast also provides information of the spatial forecast error distribu-
tion. In Figure 6, we illustrate the horizontal correlation field for the temperature error in
the Pittsburgh area corresponding to 10 a.m. August 1 and August 2, 2006 [38]. Note that
the error field widens in time as the uncertainty of the forecast increases. Note also that
strong temperature variations can arise in relatively narrow regions. Therefore, we em-
phasize that accounting for spatial effects is critical for accurate and consistent forecasts.
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Figure 4: 5-day-ahead temperature forecast of NWP for the Pittsburgh airport area during
August 1–6, 2006. Forecast mean and 30 ensembles obtained from perturbations of initial
temperature field (left). Reconstruction of forecast distribution from ensembles - mean ±
3 σ (right).
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Figure 5: Standard scores for GP and weather model forecasts.

4 Integrative Study for Building System

In this section, we present a D-RTO simulation study on the climate control of a building
system. Our objective is to illustrate how the use of forecast information can translate into
lower operating costs. Finally, we analyze the performance of the proposed uncertainty
quantification techniques when coupled to the stochastic optimization formulation.
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Figure 6: Correlation field for the temperature errors in the Pittsburgh area at 10 a.m.
on consecutive days.

4.1 Economic Impact of Forecasting

Commercial buildings are energy-intensive facilities where considerable cost savings can be
realized through optimal operating strategies. As an example, researchers have found that
the thermal mass of a building can be used for temporal energy storage [6]. With this, one
can optimize the temperature set-points trajectories during the day to shift the heating and
cooling electricity demands to off-peak hours and thus reduce costs. For instance, a cooling
strategy that has been used in commercial facilities consists in cooling down the building as
much as possible at night when electricity is cheaper so as to reduce the amount of cooling
needed during the day when electricity is more expensive [7]. Since the thermal response
of the building can be slow (order of hours), this can be exploited to reduce the on-peak
electricity demand the next day. However, we point out that the optimal timing at which
it is decided to start the cooling at night directly depends on the ambient temperature
expected the next day. In addition, because of governmental regulations, special care
needs to be taken to stay within the thermal comfort zone at all times. Consequently,
incorporating weather forecast information in the optimization/control formulation can be
beneficial. The building system under consideration is sketched in Figure 7. We assume a
total volume of 10,000 m3 and a total surface area of 3,500 m2. The building is equipped
with a gas furnace, an electric heater, and an electric cooling system. The ambient
temperature information used in this study is presented in Figure 2. The dynamic response
of the building internal temperature is modeled by an ordinary differential equation; the
building wall is modeled by a second-order PDE that accounts for conductive effects along
the wall. The ambient temperature enters the model through a Robin boundary condition
at the wall external face. The basic heat-transfer model structure has been obtained from
[10]. To analyze the effect of adding forecast information of the ambient temperature we
first solve an open-loop dynamic optimization problem with perfect forecast information
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Figure 7: Schematic representation of building integration with heating, ventilation, and
air-conditioning (HVAC) system.

and a prediction horizon of one year. The optimization problem has the following form:

min
ϕelec

c (τ),ϕgas
h

(τ),ϕelec
h

(τ)

∫ tk+T

tk

[
Celec(τ)ϕelec

c (τ) + Celec(τ)ϕelec
h (τ) + Cgasϕ

gas
h (τ)

]
dτ

CI ·
∂TI

∂τ
= ϕgas

h (τ) + ϕelec
h (τ) − ϕelec

c (τ) − S · α′ · (TI(τ) − TW (τ, 0)) (16a)

∂TW

∂τ
= β ·

∂2TW

∂x2
(16b)

0 = α′ (TI(τ) − TW (τ, 0)) + k ·
∂TW

∂x

∣
∣
∣
∣
(τ,0)

(16c)

0 = α′′ (TW (τ, L) − TA(τ)) + k ·
∂TW

∂x

∣
∣
∣
∣
(τ,L)

(16d)

Tmin
I ≤ TI(τ) ≤ Tmax

I (16e)

0 ≤ ϕgas
h (τ), 0 ≤ ϕelec

h (τ), 0 ≤ ϕelec
c (τ) (16f)

TI(0) = T k
I (16g)

TW (0, x) = T k
W (x), (16h)

where TA(τ) is the ambient temperature, TI(τ) is the internal temperature, and TW (τ, x)
is the wall temperature (all of them in oC). The controls are the gas heating power ϕgas

h (τ),
the electric heating power ϕelect

h (τ), and the electric cooling power ϕelec
c (τ) (all of them in

kcal/hr). The model parameters are summarized in Table 1. The base wall thickness is
assumed to be 0.20 m. We assume an on-peak electricity price of 0.12 $/kWh available
from 9 a.m. to 10 p.m. The off-peak price is 0.04 $/kWh. A demand rate of 16 $/kW is
charged for the monthly peak electricity demand. The natural gas price is fixed at 0.10
$/kWh. Average prices were obtained from [51]. The thermal comfort zone is assumed
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to be 69-77oF. The above PDE-constrained optimization problem is discretized by using
a central difference scheme in the axial dimension and an implicit Euler scheme in time.
The resulting LP was implemented in AMPL and solved with IPOPT [52].

From the solution of the open-loop dynamic optimization problem, we obtain the
optimal cost and use it as a reference for the best economic performance of the system.
The resulting minimum annual cost is $28,672 (demand cost is approximately 60% of total
cost). The one-year forecast problem contains 96,613 constraints and 26,349 degrees of
freedom and can be solved in 25 iterations and 30 CPU-seconds with IPOPT. All numerical
calculations are performed on a personal computer with 4 GB of memory and a Duo-Core
Intel processor running at 2.1 GHz. We then solve closed-loop D-RTO problems over the
entire year with prediction horizons of 1, 3, 6, 9, 12, 16, and 24 hr. An update period
∆ of 1 hr is used. The 24-hr forecast problem contains 253 constraints and 70 degrees of
freedom and can be solved, in warm-start mode, in 10 iterations and 0.1 CPU-seconds.
The relative costs (excluding demand costs) are presented in Figure 8(a). As can be seen,
for a purely reactive strategy, the relative costs can go as high as 24% as a result of lack of
proactiveness. In addition, we observe that a horizon of 24 hr is sufficient to achieve the
minimum potential costs. The reason is that the thermal mass of the building cannot be
used for a very long time because energy is lost through the wall. In fact, we found that
as the building insulation is enhanced, the costs can be further reduced. To illustrate this
situation, in Figure 8(b) we present the relative costs with an increased wall thickness
of 0.3 m. As can be seen, using a forecast of 24 hr can reduce costs by 45%. On the
other hand, when the building is poorly insulated, increasing the forecast horizon does
not reduce the costs. In other words, the economic potential of adding forecast information
is tightly related to the ability to store energy in the system, which is in turn influenced
by the building characteristics. The predicted cost savings agree with the results of a
previous economic study on a photovoltaic-hydrogen hybrid system [54]. In that study,
we found that the operating costs can be reduced by as much as 75% by incorporating
forecast information of the solar radiation.

In Figure 9 we present the temperature set-points for the 24-hr and 1-hr forecast
cases during 10 days in the winter season. As can be seen, the 24-hr forecast strategy
determines the optimal timing at which electric heating needs to be turned on at night.
Note that the optimum timing and the peak temperature depend on the expected ambient
temperature. On the other hand, the reactive strategy is not able to foresee the structure
of the electricity prices. This strategy suggests that the optimal policy is to keep the
temperature set-point always at the lowest possible value in order to reduce the overall
heating costs. Although this strategy seems intuitive, it is clearly not optimal if the
structure of the electricity rates and the thermal mass of the building can be exploited.
From Figure 10, we observe that the optimal cooling policy during the summer follows a
peak-shifting strategy. The resulting policy recommends letting the building cool down
at night until the temperature gets close to the lower limit of the comfort zone. During
the day, the building is allowed to heat up progressively until it reaches the highest limit
of the comfort zone. Similar results have been obtained by Braun and coworkers [7].
The proposed D-RTO framework can account for time variations and correct the policy
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Table 1: Building model parameters.
Parameter Value Units Meaning

β 0.001 m2

hr
thermal diffusivity of wall

CI 8,325 kJ
oC

internal heat capacity
k 1.16×10−4 kW

m·oC
conductivity of wall

S 3,500 m2 wall total surface area
A 1,000 m2 usable total surface area
V 10,000 m3 building total volume
α′ 4.64×10−3 kW

m2·oC
convective heat transfer coefficient (wall inner side)

α′′ 1.16×10−2 kW
m2·oC

convective heat transfer coefficient (wall outer side)
L 0.20 m wall thickness

Celec 0.12 $
kWh

on-peak electricity cost

Celec 0.04 $
kWh

off-peak electricity cost

Cgas 0.10 $
kWh

natural gas cost

automatically on-line. In this simplified study the cooling requirements are negligible
because we account only for heat gains and losses through the wall. In addition, the day-
night temperature difference at this location is large during summer, as seen in Figure 10.
A more detailed study should also account for internal heat gains, radiation heating, air
recycling, and humidity factors. Nevertheless, these preliminary results indicate that the
performance of operating strategies can benefit from anticipating the weather conditions.
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Figure 8: Impact of forecast horizon on economic performance of building system.
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Figure 9: Optimal temperature set-points of closed-loop D-RTO with 1-hr and 24-hr
forecasts. Comfort zone is highlighted in gray.
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Figure 10: Internal temperature set-point and ambient temperature during 10 days in
summer. Closed-loop D-RTO with a forecast of 24 hr was used. Comfort zone is high-
lighted in gray.

4.2 Stochastic Optimization Results

The previous study assumes that the weather information is perfectly known. We now
consider the case in which the temperature trends are obtained from the forecast models.
We solve the SAA approximation of the stochastic counterpart of problem (16) over a
horizon of 5 days. The SAA problem is given in equation (17). We use 100 samples
drawn from the forecast distributions of the multi-step GP model and of the weather
model shown in Figures 3 and 4, respectively. After discretization, the resulting NLP
contains 130,900 constraints and 357 degrees of freedom. The problem can be solved,
in warm-start mode, in 20 iterations and 68 CPU-seconds with IPOPT. The resulting
open-loop profiles for the building internal temperature are presented in Figure 11. In the
top graph, we present the temperature profile for the ideal strategy where perfect forecast
information is assumed. Since there is no uncertainty, the predicted temperature profile
matches the actual realization. Note that the optimal set-point policy hits continuously
the bounds of the comfort zone, as it tries to take advantage of the on-peak and off-
peak electricity rates to minimize costs. In the middle graph, we present the optimal
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temperature profiles obtained using forecast information from the GP model. The gray
lines are the predicted realizations of the dynamic model in the SAA formulation. This is
an outcome of the solution of the SAA problem. Note that, since the uncertainty structure
provided by GP is not able to capture the ambient temperature, the actual realization of
the internal building temperature goes outside the comfort zone. In the bottom graph, we
see that the use of weather model forecast results in an temperature trajectory that stays
within the comfort zone at all times. Note that the variance of the predicted temperature
realizations increases with time. In addition, since the comfort zone is very narrow (≈5oC),
high-precision forecast information is needed to realize economic benefits.

The cost penalty sustained by the NCEP weather uncertainty approach from subsec-
tions 3.1 and 3.1.2 when compared to the GP model uncertainty approach is about 10-20%
of the ideal cost. One should bear in mind, however, that the GP model cost turns out to
be infeasible for the actual realizations (the building temperature significantly exits the
comfort level), so using only cost as a performance is misleading in this case. We could
easily imagine some financial measure of the violation and report it to balance the per-
ceived cost drop. Nevertheless, given the complex regulatory nature of the comfort level
limits, their violation cost may easily be understated. For example, the 10CFR434 federal
regulations for new federal, commercial and multi-family high-rise residential buildings is
the United States require compliance with the comfort zone at least 98 % of the time the
building is occupied. Therefore using the GP model would result in the operator being in
violation of the federal law (the constraint violation in Figure 11 would be out of compli-
ance more than 30 % of the period stated), the cost of which is difficult to fully assess.
Given the difficulty of pricing the violation, it is more beneficial to regard the situation
from the constrained optimization perspective and state that feasibility takes precedence
over low cost. We conclude that the weather uncertainty model is the only one that has a
sufficiently accurate description of the uncertainty to result in a feasible policy at a cost
that is still substantially lower than the reactive policy cost. Finally, we should emphasize
that the above results neglect the presence of a back-up controller that could potentially
bring back the temperature within the thermal comfort zone. While this is certainly the
case in practice, an economic penalty will have to be considered for the back-up controller
as well. This would require a more detailed closed-loop case study.
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ϕelec

c (τ),ϕgas
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∂T j

I
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∂T j
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∣
∣
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(17d)

Tmin
I ≤ T j

I (τ) ≤ Tmax
I (17e)

0 ≤ ϕgas
h (τ), 0 ≤ ϕelec

h (τ), 0 ≤ ϕelec
c (τ) (17f)

TI(0) = T k
I (17g)

TW (0, x) = T k
W (x), τ ∈ [tk, tk + T ], j = 1, ..., NS. (17h)

5 Conclusions and Future Work

In this work, we demonstrate that significant costs reductions can be achieved by using
on-line optimization strategies that can anticipate the weather conditions. In particular,
we show that adding forecast information provides a mechanism to compute proactive
operating policies that can lead to enhanced performance.

We present different strategies to obtain weather forecast information. We emphasize
that empirical models provide quick estimates of the weather trends but they are limited
to short horizons and can lead to inconsistent uncertainty bounds. Motivated by these
facts, we discuss the potential of using detailed weather models to obtain forecasts. We
demonstrate that these models are capable of providing more accurate forecasts and are
able to capture temporal and spatial correlations of the state fields. We extend a weather
model to provide forecast covariance information through the ensemble approach.

As future work, we are interested in establishing a full connection between the weather
model forecasts and the stochastic dynamic optimization framework. To do so, we first
must implement the ensemble-based approach in a closed-loop manner. Since the weather
model is extremely computationally expensive, a dedicated, centralized parallel comput-
ing architecture is needed. In addition, since the amount of data to be handled is huge,
strategies must be established to communicate only the essential forecast statistical infor-
mation. Another important issue is the fact that the weather model provides information
over relatively coarse fields that need to be mapped to the specific location of the system
under consideration. To this end, we are interested in using a Gaussian process modeling
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Figure 11: Performance of weather forecast-based operating strategies. Thermal comfort
zone is highlighted by thick solid lines, predicted temperatures are gray lines, and actual
realizations are dashed lines.

framework to interpolate the spatiotemporal fields. We are also interested in addressing
the complexity of large-scale stochastic programming problems through adaptive sam-
pling and variance reduction techniques. Finally, establishing potential economic benefits
in different applications such as polygeneration systems is an important research area.
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